ions are located above as well as below each window which align the windows so that straight tunnels are formed running along the a axis (see Fig. 2).

Two neighbouring VO_{6} octahedra form an edgesharing bioctahedron with a $\mathrm{V} \cdots \mathrm{V}$ distance of 2.928 (1) \AA. Each distorted VO_{6} octahedron consists of two very short, two medium and two long V - O bond distances with one of the O atoms, $\mathrm{O}(4)$, not being shared with P and coordinated to the Ba^{2+} ions only. The two very short V-O bonds are cis to each other and the bonds trans to them have long $\mathrm{V}-\mathrm{O}$ distances. Atoms $\mathrm{O}(1)$ and $\mathrm{O}(2)$, which are trans to each other, have two medium-length $\mathrm{V}-\mathrm{O}$ bond distances. Each PO_{4} group has two O atoms that bridge the nonbonding $\mathrm{V} \cdots \mathrm{V}$ contact within a bioctahedron, one O atom being coordinated to a neighbouring bioctahedron, and one O atom to the Ba^{2+} ions only. The P tetrahedron is slightly distorted as shown by three long $\mathrm{P}-\mathrm{O}$ distances of $\sim 1.55 \AA$ and a short one of $1.507 \AA$. Atom $\mathrm{O}(6)$, which is not shared with V , shows the shortest $\mathrm{P}-\mathrm{O}$ bond. The Ba^{2+} ions are nine coordinated by O atoms from adjacent layers. The coordination number is determined on the basis of the maximum gap in the $\mathrm{Ba}-\mathrm{O}$ distances ranked in increasing order.

The Sr phase is isostructural with $\mathrm{Ba}\left(\mathrm{VO}_{2}\right) \mathrm{PO}_{4}$. It should be noted that the Pb analogue can also be obtained under similar reaction conditions. Preliminary work on a crystal of $\mathrm{Pb}\left(\mathrm{VO}_{2}\right) \mathrm{PO}_{4}$ of reasonable quality showed that it was isostructural with the Ba compound. The indexed cell dimensions of the Pb compound are $a=5.505(2), \quad b=9.913$ (3), $c=$ 8.511 (3) $\AA, \quad \beta=90.50(3)^{\circ}$ and $V=464.4$ (3) \AA. However, the Ca and Mg analogues have not been obtained under similar reaction conditions.

Financial support from the National Science Council and the Institute of Chemistry, Academia Sinica, is gratefully acknowledged.

References

Amoros, P., Beltran-Porter, D., Le Bail, A., Ferey, G. \& Villeneuve, G. (1988). Eur. J. Solid State Inorg. Chem. 25, 599-607.
Brown, I. D. \& Altermatt, D. (1985). Acta Cryst. B41, 244 247.
huan, G., Johnson, J. W., Jacobson, A. J., Corcoran, E. W. Jr \& Goshorn, D. P. (1991). J. Solid State Chem. 93, 514-525.
Sheldrick, G. M. (1990). SHELXTL-Plus, release 4.11. Siemens Analytical X-ray Instruments, Inc., Madison, Wisconsin, USA. Wang, S. L., Kang, H. Y., Cheng, C. Y. \& LiI, K. H. (1991). Inorg. Chem. 30, 3496-3499, and references cited therein.

Acta Cryst. (1992). C48, 978-982

Structure of $\mathbf{K Y F}_{4}$

By Y. Le Fur
Laboratoire de Cristallographie, Associé à l'Université J. Fourier, CNRS, 166X, 38042 Grenoble CEDEX, France
N. M. Khaidukov
N. S. Kurnakov Institute of General and Inorganic Chemistry, 31 Leninskii Pr., 117907 Moscow, Russia

and S. Aléonard
Laboratoire de Cristallographie, Associé à l'Université J. Fourier, CNRS, 166X, 38042 Grenoble CEDEX, France

(Received 17 June 1991; accepted 22 November 1991)

Abstract

Potassium yttrium tetrafluoride, KYF_{4}, M_{r} $=204.0$, trigonal, $\quad P 3_{1}, \quad a=14.060(10), \quad c=$ $10.103(10) \AA, \quad V=1729(5) \AA^{3}, \quad Z=18, \quad D_{x}=$ $3.49 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda(\mathrm{Ag} K \alpha)=0.5594 \AA, \mu=87.93 \mathrm{~cm}^{-1}$, $F(000)=753$, room temperature, final $R=0.038$ for 3045 independent reflections. KYF_{4} is a fluoriterelated superstructure. Cations are distributed on three layers perpendicular to the c axis. In each layer,

chains of YF_{12} groups formed by two F pentagonal bipyramids surrounding the Y atoms alternate with chains of F edge-shared distorted cubes surrounding the K atoms.

Introduction. In an initial study (Le Fur, 1977; Aléonard, Le Fur, Pontonnier, Gorius \& Roux, 1978), we have shown that the hexagonal lattices of the phases
$\mathrm{KLnF}_{4}(\mathrm{Ln}=\mathrm{Gd} . . . \mathrm{Lu}$ and Y$)$ and the cubic facecentred lattice of the fluorite were related by $a_{\mathrm{H}}=$ $\left(a_{\mathrm{F}} \sqrt{ } 2\right) \sqrt{ } 3, c_{\mathrm{H}}=a_{\mathrm{F}} \sqrt{ } 3$. On the other hand, the stacking of hexagonal close-packed layers of cations perpendicular to the direction \mathbf{c} and the fact that every F polyhedron centred by a cation is surrounded by six 'empty' F polyhedra, have been shown to be characteristic of the fluorite arrangement along the direction [111], the cations being distributed on three layers at the levels $z=0, \frac{1}{3}, \frac{2}{3}$. But, to our knowledge, up to now, there has been no precise structural determination of these compounds. The results in this paper concern single crystals of KYF_{4} suitable for X-ray analysis, supplied by Dr Khaidukov.

Experimental. Crystal size: sphere 0.308 mm in diameter. Density not measured. Nonius CAD-4 diffractometer, graphite monochromator. Systematic absences $00 l, l \neq 3 n .25$ reflections ($10.0<\theta<18.0^{\circ}$) for refining unit-cell dimensions. ω scan, scan width 1.20°, scan speed $0.028^{\circ} \mathrm{s}^{-1}$, background measuring time 21 s .21348 reflections collected ($3<\theta<34^{\circ}$), $\pm h, \pm k, \pm l, h_{\max }=25, k_{\max }=25, l_{\max }=18$. Two orientation (666 and $0 \overline{6} 6$) and two intensity ($\overline{7} 81$ and $8 \overline{7} 1$) control reflections were measured every 2 h and showed no significant variations. 7433 independent reflections obtained after averaging Friedel pairs ($R_{\text {int }}=0.04$). Lorentz and polarization corrections, spherical absorption correction (maximum/minimum transmission factors 14.5/17.8). Crystal structure solved by classical methods: three-dimensional Patterson function for locating the Y and K atoms, successive Fourier syntheses for defining the Y and K sites and, at the end, a difference Fourier synthesis in order to obtain the positions of the F atoms.

The first refinements, using the Enraf-Nonius (1977) SDP program, with 1286 data obtained after omission of all the 'fluorite' reflections [$(h+l),(k+l)$ and $(h+k-l)=3 n]$ and all the superstructure reflections with $I<8 \sigma(I)$ allowed the K and Y atoms to be shared on different cationic sites and led to an R factor of 0.03 .

In the final refinement, the use of 3045 data corresponding to all the independent reflections with $I>$ $3.3 \sigma(I)$ (including, therefore, the 'fluorite' reflections) did not modify the previous results and led to a final $R($ based on $F)=0.038, w R=0.044(w=1), S=$ 3.665 , maximum $\Delta / \sigma=0.06$, for 325 refined parameters. Maximum peak height in final difference Fourier synthesis was 1.25 e \AA^{-3}, negative peak height in the final difference Fourier synthesis was $1.17 \mathrm{e} \AA^{-3}$. The extinction coefficient refined in least squares $=$ 2.5956×10^{-7}. Scattering factors for neutral atoms and $f^{\prime}, f^{\prime \prime}$ were taken from International Tables for X-ray Crystallography (1974, Vol. IV). A MicroVAX II computer was used for all calculations.

Discussion. Table 1 reports the final atomic coordinates and Table 2 gives the interatomic distances and some angles in the polyhedra surrounding the K and Y atoms.* Fig. 1 shows the layer at the mean level z $=\frac{1}{3}$: the cationic subcell is very near that of the fluorite, but the distortions of the anionic subcell modify the cationic environments and chains of KF_{8} and YF_{7} polyhedra appear.

Environment of the cations. It is to be noticed that, when the ideal fluorite structure is projected along the direction [111], the F cube surrounding the cations may be described as involving four F atoms located in a plane $\{\overline{1} 01\}$ of the ideal cube with two of them along the direction [111]. The four others are located in a perpendicular plane. The planes $\{\overline{1} 01\}$ divide the cube into two trigonal prisms.

All the K atoms are located at the centres of distorted F cubes. Four F atoms are approximately found in a plane $\{\overline{1} 01\}$ and are characterized by short distances ($\mathrm{K}-\mathrm{F} 2.6 \AA$). The other four F atoms, approximately distributed in the perpendicular plane, are a little farther $(\mathrm{K}-\mathrm{F} \simeq 2.9 \AA$) from the K atom.

The polyhedra surrounding $K(7), K(9)$ and $K(11)$ are more distorted than those surrounding $\mathrm{K}(8)$, $K(10)$ and $K(12)$, but all of them retain three almost square faces of the ideal cube.

In Table 2 interatomic distances and angles are given for the $K(7) \mathrm{F}_{8}$ and $\mathrm{K}(8) \mathrm{F}_{8}$ polyhedra schematized in Fig. 2.

The Y atoms are surrounded by only seven F atoms, with two types of environments: type I for $Y(1), Y(3)$ and $Y(5)$ and type II for $Y(2), Y(4)$ and $\mathrm{Y}(6)$. The YF_{7} polyhedra of type I are characterized by the presence of four F atoms in an 'almost ideal' plane $\{101\}$. Around $Y(1)$, for instance (Fig. 2), they form the distorted rectangular face $\mathrm{F}(1)-\mathrm{F}(7)$ $\mathrm{F}(1 A)-\mathrm{F}(8)$ with $\mathrm{F}(1)$ and $\mathrm{F}(1 A)$ along the direction [111]. These atoms and two 'ideal' others [$\mathrm{F}(10)$ and $\mathrm{F}(9)$] define a distorted trigonal prism which is monocapped by the seventh F atom $F(4)$, located at the middle of the edge of the other trigonal prism forming the 'ideal' cube. However, the trigonal prisms are very distorted (Table 2), and the observed distances and angles allow one to regard the YF_{7} polyhedra rather as pentagonal bipyramids (Table 2 and Fig. 2). They are all characterized by angles $\mathrm{F}_{\mathrm{ax}}-\mathrm{Y}-\mathrm{F}_{\mathrm{eq}} \simeq 90, \mathrm{~F}_{\mathrm{eq}}-\mathrm{Y}-\mathrm{F}_{\mathrm{eq}} \simeq 72$ and $\mathrm{F}_{\mathrm{ax}}-\mathrm{Y}-$ F_{ax} observed between 171 and 174°.

The polyhedra YF_{7} of type II are characterized by the absence of F atoms in the direction [111] and can

[^0]Table 1. Final atomic coordinates and equivalent isotropic thermal parameters $\left(\AA^{2}\right)$ for KYF_{4}, with e.s.d.'s in parentheses

$B_{\text {eq }}=(4 / 3) \sum_{i} \sum_{j} \beta_{i j} \mathbf{a}_{i} . \mathbf{a}_{j}$.				
	x	y	z	$B_{\text {eq }}$
Y(1)	0.12871 (6)	0.88764 (6)	0.333	0.62 (1)
Y(2)	0.28157 (7)	0.73104 (7)	0.32271 (8)	0.62 (1)
$\mathrm{Y}(3)$	0.78003 (7)	0.20592 (6)	0.3391 (1)	0.52 (1)
Y(4)	0.94137 (7)	0.05770 (7)	0.3294 (2)	1.05 (1)
Y(5)	0.45256 (7)	0.54579 (7)	0.3250 (1)	0.99 (1)
Y(6)	0.60374 (7)	0.38662 (6)	0.34411 (7)	0.40 (1)
K(7)	0.7818 (2)	0.7190 (2)	0.3183 (2)	1.11 (4)
K(8)	0.2677 (2)	0.2208 (3)	0.3522 (3)	1.92 (5)
K(9)	0.1050 (2)	0.3945 (3)	0.3134 (4)	2.15 (6)
$\mathrm{K}(10)$	0.6111 (2)	0.8778 (2)	0.3493 (3)	1.25 (4)
K(11)	0.9466 (3)	0.5591 (2)	0.3450 (3)	1.94 (5)
K(12)	0.4549 (3)	0.0652 (3)	0.3201 (4)	1.83 (6)
F(1)	0.1304 (7)	0.9342 (7)	0.1185 (9)	2.1 (2)
$\mathrm{F}(1 A)$	0.0692 (8)	0.8779 (8)	0.546 (1)	2.2 (2)
$F(2)$	0.2105 (8)	0.5934 (8)	0.472 (1)	2.5 (2)
$\mathrm{F}(2 A)$	0.334 (1)	0.7286 (7)	0.656 (1)	3.5 (3)
F(3)	0.7372 (5)	0.2023 (5)	0.5598 (8)	1.0 (1)
$\mathrm{F}(3 A)$	0.7901 (6)	0.2684 (6)	0.1305 (9)	1.4 (1)
$\mathrm{F}(4)$	1.000 (1)	0.059 (1)	0.659 (2)	4.9 (4)
$\mathrm{F}(4 A)$	0.0489 (8)	0.1223 (8)	0.152 (2)	4.7 (2)
F(5)	0.3954 (6)	0.5413 (6)	0.5373 (8)	1.4 (1)
$\mathrm{F}(5 A)$	0.4618 (7)	0.5950 (6)	0.1110 (8)	1.5 (1)
F(6)	0.5440 (6)	0.2863 (6)	0.5317 (8)	1.4 (1)
$\mathrm{F}(6 \mathrm{~A})$	0.6057 (7)	0.3368 (7)	0.009 (1)	2.0 (2)
F(7)	0.7727 (6)	0.7346 (6)	0.064 (1)	1.6 (1)
$\mathrm{F}(7 \mathrm{~A})$	0.8133 (9)	0.7262 (6)	0.576 (1)	2.1 (2)
F(8)	0.2533 (6)	0.2289 (6)	0.606 (1)	1.8 (1)
$\mathrm{F}(8 A)$	0.8050 (6)	0.0719 (6)	0.4332 (8)	1.5 (1)
F(9)	0.1339 (6)	0.3916 (6)	0.5702 (8)	1.2 (1)
$\mathrm{F}(9 \mathrm{~A})$	0.0941 (7)	0.4031 (8)	0.063 (1)	2.1 (2)
$\mathrm{F}(10)$	0.1535 (6)	0.7561 (7)	0.4276 (9)	1.6 (1)
$\mathrm{F}(10 \mathrm{~A})$	0.5874 (6)	0.8816 (7)	0.6044 (9)	1.4 (1)
$\mathrm{F}(11)$	0.9390 (6)	0.5741 (7)	0.6029 (9)	1.5 (1)
$\mathrm{F}(11 A)$	0.9438 (6)	0.5316 (6)	0.0934 (8)	1.2 (1)
F (12)	0.4830 (7)	0.0692 (7)	0.5708 (9)	1.6 (2)
$\mathrm{F}(12 \mathrm{~A})$	0.4469 (7)	0.0849 (6)	0.0572 (9)	1.7 (1)

Table 2. Principal interatomic distances (\AA) and bond angles $\left(^{\circ}\right)$ in the atomic arrangement of KYF_{4}, with e.s.d.'s in parentheses

Environment of the K atoms

$\mathrm{K}(7)-\mathrm{F}(9 \mathrm{~A})$	2.552 (8)	$\mathrm{K}(10)-\mathrm{F}(11)$	2.555 (10)
\mathbf{K} (7)-F(7)	2.587 (10)	$\mathrm{K}(10)-\mathrm{F}(9 A)$	2.577 (12)
\mathbf{K} (7)-F(8)	2.595 (10)	$\mathrm{K}(10)-\mathrm{F}(10 \mathrm{~A})$	2.603 (9)
$\mathrm{K}(7)-\mathrm{F}(7 A)$	2.635 (10)	$\mathrm{K}(10)-\mathrm{F}(10)$	2.606 (9)
$\mathrm{K}(7)-\mathrm{F}(3 A)$	2.898 (10)	$\mathrm{K}(10)-\mathrm{F}(1 A)$	2.846 (13)
$\mathrm{K}(7)-\mathrm{F}(12)$	2.912 (11)	$\mathrm{K}(10)-\mathrm{F}(8 A)$	2.856 (6)
$\mathrm{K}(7)-\mathrm{F}(1 \mathrm{~A})$	3.002 (9)	$\mathrm{K}(10)-\mathrm{F}(5 A)$	2.982 (7)
$\mathrm{K}(7)-\mathrm{F}(4 \boldsymbol{A})$	3.039 (15)	$\mathrm{K}(10)-\mathrm{F}(2 A)$	3.022 (16)
$\mathrm{K}(8)-\mathrm{F}(8 A)$	2.574 (9)	$\mathrm{K}(11)-\mathrm{F}(8)$	2.566 (7)
$\mathrm{K}(8)-\mathrm{F}(8)$	2.579 (10)	$\mathrm{K}(11)-\mathrm{F}(11 A)$	2.568 (9)
$\mathbf{K}(8)-\mathbf{F}(7)$	2.593 (10)	$\mathrm{K}(11)-\mathrm{F}(12 A)$	2.619 (10)
$\mathrm{K}(8)-\mathrm{F}(10 \mathrm{~A})$	2.660 (8)	$\mathrm{K}(11)-\mathrm{F}(11)$	2.620 (9)
$\mathrm{K}(8)-\mathrm{F}(3)$	2.833 (9)	$\mathbf{K}(11)-\mathbf{F}(6)$	2.896 (10)
$\mathrm{K}(8)-\mathrm{F}(11 A)$	2.860 (9)	$\mathrm{K}(11)-\mathrm{F}(5)$	2.914 (10)
$\mathrm{K}(8)-\mathrm{F}(1)$	2.865 (8)	$\mathrm{K}(11)-\mathrm{F}(10)$	2.961 (7)
$\mathrm{K}(8)-\mathrm{F}(4)$	3.038 (20)	$\mathrm{K}(11)-\mathrm{F}(3 A)$	3.044 (7)
$\mathrm{K}(9)-\mathrm{F}(9 A)$	2.539 (11)	$\mathrm{K}(12)-\mathrm{F}(12)$	2.560 (9)
$\mathrm{K}(9)-\mathrm{F}(10 A)$	2.578 (11)	$\mathrm{K}(12)-\mathrm{F}(7)$	2.615 (7)
$\mathrm{K}(9)-\mathrm{F}(12 A)$	2.593 (10)	$\mathrm{K}(12)-\mathrm{F}(11)$	2.615 (11)
$\mathrm{K}(9)-\mathrm{F}(9)$	2.629 (8)	$\mathrm{K}(12)-\mathrm{F}(12 A)$	2.678 (10)
$\mathrm{K}(9)-\mathrm{F}(2)$	2.905 (10)	$\mathrm{K}(12)-\mathrm{F}(5 A)$	2.809 (11)
$\mathrm{K}(9)-\mathrm{F}(7 \mathrm{~A})$	2.908 (13)	$\mathrm{K}(12)-\mathrm{F}(3)$	2.869 (7)
$\mathrm{K}(9)-\mathrm{F}(1)$	2.915 (12)	$\mathrm{K}(12)-\mathrm{F}(6 A)$	2.906 (11)
$\mathbf{K}(9)-\mathrm{F}(5)$	2.929 (7)	$\mathrm{K}(12)-\mathrm{F}(9)$	2.911 (9)
$\mathrm{K}(7) \mathrm{F}_{8}$ polyhedron			
Edges		Angles	
$\mathrm{F}(7)-\mathrm{F}(1 A)$	2.955	$\mathrm{F}(8)-\mathrm{F}(7)-\mathrm{F}(1 A)$	84
$\mathrm{F}(7)-\mathrm{F}(8)$	3.482	$\mathrm{F}(12)-\mathrm{F}(7)-\mathrm{F}(8)$	89
$F(7)-F(12)$	3.359	$\mathrm{F}(1 A)-\mathrm{F}(7)-\mathrm{F}(12)$	106
		$\mathrm{F}(9 A)-\mathrm{F}(1 A)-\mathrm{F}(4 A)$	69
		$\mathrm{F}(4 A)-\mathrm{F}(1 A)-\mathrm{F}(7)$	111
		$\mathrm{F}(7)-\mathrm{F}(1 / A)-\mathrm{F}(9 A)$	74

YF_{7} polyhedra of type I

YF_{7} polyhedra of type I					
$\mathrm{Y}(1)-\mathrm{F}(7)$	$2.127(9)$	$\mathrm{Y}(3)-\mathrm{F}(12 A)$	$2.127(10)$	$\mathrm{Y}(5)-\mathrm{F}(10 A)$	$2.142(10)$
$\mathrm{Y}(1)-\mathrm{F}(8)$	$2.161(9)$	$\mathrm{Y}(3)-\mathrm{F}(11)$	$2.155(10)$	$\mathrm{Y}(5)-\mathrm{F}(9 A)$	$2.160(12)$
$\mathrm{Y}(1)-\mathrm{F}(9)$	$2.209(9)$	$\mathrm{Y}(3)-\mathrm{F}(7 A)$	$2.239(10)$	$\mathrm{Y}(5-\mathrm{F}(2 A)$	$2.214(8)$
$\mathrm{Y}(1)-\mathrm{F}(4)$	$2.238(10)$	$\mathrm{Y}(3)-\mathrm{F}(6 A)$	$2.222(7)$	$\mathrm{Y}(5)-\mathrm{F}(11 A)$	$2.248(8)$
$\mathrm{Y}(1)-\mathrm{F}(10)$	$2.257(10)$	$\mathrm{Y}(3)-\mathrm{F}(3 A)$	$2.260(8)$	$\mathrm{Y}(5)-\mathrm{F}(5 A)$	$2.253(8)$
$\mathrm{Y}(1)-\mathrm{F}(1)$	$2.263(9)$	$\mathrm{Y}(3)-\mathrm{F}(8 A)$	$2.289(9)$	$\mathrm{Y}(5)-\mathrm{F}(5)$	$2.281(8)$
$\mathrm{Y}(1)-\mathrm{F}(1 A)$	$2.288(10)$	$\mathrm{Y}(3)-\mathrm{F}(3)$	$2.303(8)$	$\mathrm{Y}(5)-\mathrm{F}(12)$	$2.289(10)$

Monocapped trigonal prism $\mathrm{Y}(1) \mathrm{F}_{7}$			
$\mathrm{F}(1 A)-\mathrm{F}(8)$	3.217	$\mathrm{F}(10)-\mathrm{F}(1 A)-\mathrm{F}(8)$	57
$F(8)-\mathrm{F}(10)$	2.896	$\mathrm{F}(1 A)-\mathrm{F}(8)-\mathrm{F}(10)$	54
$\mathrm{F}(10)-\mathrm{F}(1 A)$	2.793	$\mathrm{F}(8)-\mathrm{F}(10)-\mathrm{F}(1 A)$	69
$F(7)-F(1)$	3.302	$\mathrm{F}(9)-\mathrm{F}(7)-\mathrm{F}(1)$	51
$F(1)-F(9)$	2.695	$F(7)-F(1)-F(9)$	56
$F(9)-F(7)$	2.869	$\mathrm{F}(1)-\mathrm{F}(9)-\mathrm{F}(7)$	73
Rectangular faces			
$\mathrm{F}(1 A)-\mathrm{F}(7)$	2.955	$\mathrm{F}(8)-\mathrm{F}(1 A)-\mathrm{F}(7)$	88
F (7)-F(1)	3.302	$\mathrm{F}(1 A)-\mathrm{F}(7)-\mathrm{F}(1)$	89
$F(1)-F(8)$	2.893	$F(7)-F(1)-F(8)$	87
$\mathrm{F}(8)-\mathrm{F}(1 A)$	3.217	$\mathrm{F}(1)-\mathrm{F}(8)-\mathrm{F}(1 A)$	92
$\mathrm{F}(1 A)-\mathrm{F}(7)$	2.955	$\mathrm{F}(10)-\mathrm{F}(1 a)-\mathrm{F}(7)$	74
$\mathrm{F}(7)-\mathrm{F}(9)$	2.869	$\mathrm{F}(1 A)-\mathrm{F}(7)-\mathrm{F}(9)$	91
$F(9)-F(10)$	2.447	$F(7)-F(9)-F(10)$	81
$\mathrm{F}(10)-\mathrm{F}(1 A)$	2.792	$\mathrm{F}(9)-\mathrm{F}(10)-\mathrm{F}(1 / \mathrm{A})$	104
$F(8)-F(1)$	2.893	$F(10)-F(8)-F(1)$	90
$\mathrm{F}(1)-\mathrm{F}(9)$	2.695	$F(8)-F(1)-F(9)$	77
$F(9)-\mathrm{F}(10)$	2.447	$F(1)-F(9)-F(10)$	106
$\mathrm{F}(10)-\mathrm{F}(8)$	2.896	$F(9)-F(10)-F(8)$	81

Table 2 (cont.)

$\mathrm{F}(7 A)-\mathrm{F}(3 A)$	2.752
$\mathrm{F}(7 A)-\mathrm{F}(9 A)$	3.360
$\mathrm{F}(7 A)-\mathrm{F}(4 A)$	2.656
$\mathrm{F}(9 A)-\mathrm{F}(1 A)$	3.693
$\mathrm{F}(9 A)-\mathrm{F}(12)$	2.868
$\mathrm{F}(12)-\mathrm{F}(3 A)$	3.045
$\mathrm{F}(8)-\mathrm{F}(3 A)$	3.83
$\mathrm{F}(8)-\mathrm{F}(4 A)$	4.05
$\mathrm{F}(4 A)-\mathrm{F}(1 A)$	2.925
$\mathrm{K}(8) \mathrm{F}_{8}$ polyhe Edges	
$\mathrm{F}(8)-\mathrm{F}(1)$	2.893
$F(8)-F(7)$	3.482
$\mathrm{F}(8)-\mathrm{F}(11 A)$	3.357
$\mathrm{F}(8 A)-\mathrm{F}(4)$	3.641
$\mathrm{F}(8 A)-\mathrm{F}(10 A)$	3.365
$\mathrm{F}(8, A)-\mathrm{F}(3)$	2.767
$F(7)-F(3)$	3.460
$F(7)-F(4)$	2.773
$F(4)-F(1)$	2.998

$\mathrm{F}(1)-\mathrm{F}(10 A)$	3.624
$\mathrm{~F}(10 A)-\mathrm{F}(11 A)$	2.913
$\mathrm{~F}(3)-\mathrm{F}(11 A)$	2.900

$\mathrm{F}(1)-\mathrm{F}(10 A)-\mathrm{F}(11 A)$ $\mathrm{F}(11 A)-\mathrm{F}(10 A)-\mathrm{F}(8 A)$
$\mathrm{F}(8 A)-\mathrm{F}(10 A)-\mathrm{F}(1)$
$\mathrm{F}(3)-\mathrm{F}(11 A)-\mathrm{F}(8)$ $\mathrm{F}(8)-\mathrm{F}(11 A)-\mathrm{F}(10 A)$ $\mathrm{F}(10 A)-\mathrm{F}(11 A)-\mathrm{F}(3)$

$\mathrm{F}(9 A)-\mathrm{F}(7 A)-\mathrm{F}(4 A)$	77
$\mathrm{F}(3 A)-\mathrm{F}(7 A)-\mathrm{F}(9 A)$	75
$\mathrm{F}(4 A)-\mathrm{F}(7 A)-\mathrm{F}(3 A)$	135
$\mathrm{F}(7 A)-\mathrm{F}(3 A)-\mathrm{F}(12)$	105
$\mathrm{F}(12)-\mathrm{F}(3 A)-\mathrm{F}(8)$	87
$\mathrm{F}(8)-\mathrm{F}(3 A)-\mathrm{F}(7 A)$	66
$\mathrm{F}(3 A)-\mathrm{F}(12)-\mathrm{F}(9 A)$	79
$\mathrm{F}(9 A)-\mathrm{F}(12)-\mathrm{F}(7)$	80
$\mathrm{F}(7)-\mathrm{F}(12)-\mathrm{F}(3 A)$	99
$\mathrm{F}(7 A)-\mathrm{F}(9 A)-\mathrm{F}(1 A)$	83
$\mathrm{F}(1 A)-\mathrm{F}(9 A)-\mathrm{F}(12)$	100
$\mathrm{F}(12)-\mathrm{F}(9 A)-\mathrm{F}(7 A)$	95
$\mathrm{F}(8)-\mathrm{F}(4 A)-\mathrm{F}(7 A)$	65
$\mathrm{F}(7 A)-\mathrm{F}(4 A)-\mathrm{F}(1 A)$	114
$\mathrm{F}(1 A)-\mathrm{F}(4 A)-\mathrm{F}(8)$	75
$\mathrm{F}(3 A)-\mathrm{F}(8)-\mathrm{F}(4 A)$	80
$\mathrm{F}(4 A)-\mathrm{F}(8)-\mathrm{F}(7)$	80
$\mathrm{F}(7)-\mathrm{F}(8)-\mathrm{F}(3 A)$	84
Angles	
$F(1)-F(8)-F(7)$	87
$F(7)-F(8)-F(11 A)$	84
$\mathrm{F}(11 A)-\mathrm{F}(8)-\mathrm{F}(1)$	103
$F(4)-F(1)-F(8)$	89
$\mathrm{F}(8)-\mathrm{F}(1)-\mathrm{F}(10 A)$	78
$\mathrm{F}(10 A)-\mathrm{F}(1)-\mathrm{F}(4)$	99
$\mathrm{F}(3)-\mathrm{F}(8 A)-\mathrm{F}(4)$	105
$\mathrm{F}(4)-\mathrm{F}(8 A)-\mathrm{F}(10 A)$	93
$\mathrm{F}(10 A)-\mathrm{F}(8 A)-\mathrm{F}(3)$	79
$\mathrm{F}(7)-\mathrm{F}(3)-\mathrm{F}(11 A)$	91
$\mathrm{F}(11 A)-\mathrm{F}(3)-\mathrm{F}(8 A)$	103
$\mathrm{F}(8 A)-\mathrm{F}(3)-\mathrm{F}(7)$	73
$F(3)-F(7)-F(4)$	110
$F(4)-F(7)-F(8)$	82
$F(8)-F(7)-F(3)$	86
$F(1)-F(4)-F(7)$	99
$\mathrm{F}(7)-\mathrm{F}(4)-\mathrm{F}(8 A)$	69
$\mathrm{F}(8 A)-\mathrm{F}(4)-\mathrm{F}(1)$	86
$\mathrm{F}(1)-\mathrm{F}(10 A)-\mathrm{F}(11 A)$	97
$\mathrm{F}(11 A)-\mathrm{F}(10 A)-\mathrm{F}(8 A)$	89
$\mathrm{F}(8 A)-\mathrm{F}(10 A)-\mathrm{F}(1)$	81
$\mathrm{F}(3)-\mathrm{F}(11 A)-\mathrm{F}(8)$	98
$\mathrm{F}(8)-\mathrm{F}(11 A)-\mathrm{F}(10 A)$	82
$\mathrm{F}(10 A)-\mathrm{F}(11 A)-\mathrm{F}(3)$	85

Angles

Table 2 (cont.)

Pentagonal bipyramid $\mathrm{Y}(1) \mathrm{F}_{7}$			
Pentagonal base			
$\mathrm{F}_{\mathrm{cq}}-\mathrm{F}_{\mathrm{cq}}$ (av.)	2.694	$\mathrm{F}_{\mathrm{a}}-\mathrm{Y}(1)-\mathrm{F}_{\text {eq }}(\mathrm{av}$.	73.5
F(1)-F(9)	2.695	$\mathrm{F}(1)-\mathrm{Y}(1)-\mathrm{F}(9)$	74.1
$\mathrm{F}(9)-\mathrm{F}(10)$	2.447	$\mathrm{F}(9)-\mathrm{Y}(1)-\mathrm{F}(10)$	66.4
$\mathrm{F}(10)-\mathrm{F}(1 / 4)$	2.793	$\mathrm{F}(10)-\mathrm{Y}(1)-\mathrm{F}(1 A)$	75.8
$\mathrm{F}(1 /$ - $\mathrm{F}(4)$	2.861	$\mathrm{F}(1 A)-\mathrm{Y}(1)-\mathrm{F}(4)$	78.4
$\mathrm{F}(4)-\mathrm{F}(1)$	2.677	$\mathrm{F}(4)-\mathrm{Y}(1)-\mathrm{F}(1)$	73.0
Pyramids			
$\mathrm{F}_{\mathrm{ax}}-\mathrm{F}_{\text {eq }}$ (av.)	3.132	$\mathrm{F}_{\mathrm{a}} \mathrm{z}-\mathrm{Y}(1)-\mathrm{F}_{\text {cq }}(\mathrm{av}$.	91
$\mathrm{F}(8)$ - $\mathrm{F}(1)$	2.893	$\mathrm{F}(8)-\mathrm{Y}(1)-\mathrm{F}(1)$	82
$\mathrm{F}(8)-\mathrm{F}(9)$	3.47	$\mathrm{F}(8)-\mathrm{Y}(1)-\mathrm{F}(9)$	105
F(8)-F(10)	2.896	$F(8)-Y(1)-F(10)$	82
$\mathrm{F}(8)-\mathrm{F}(14)$	3.217	$\mathrm{F}(8)-\mathrm{Y}(1)-\mathrm{F}(1 A)$	93
$\mathrm{F}(8)-\mathrm{F}(4)$	3.187	$\mathrm{F}(8)-\mathrm{Y}(1)-\mathrm{F}(4)$	93
$\mathrm{F}_{\mathrm{ax}}-\mathrm{F}_{\text {eq }}$ (av.)	3.074	$\mathrm{F}_{2 \mathrm{x}}-\mathrm{Y}(1)-\mathrm{F}_{\text {eq }}(\mathrm{av}$.	89.4
$\mathrm{F}(7)-\mathrm{F}(1)$	3.302	$F(7)-Y(1)-F(1)$	97
F (7)-F(9)	2.869	$F(7)-Y(1)-F(9)$	83
$F(7)-\mathrm{F}(10)$	3.47	$\mathrm{F}(7)-\mathrm{Y}(1)-\mathrm{F}(10)$	104
$\mathrm{F}(7)-\mathrm{F}(14)$	2.955	$\mathbf{F}(7)-\mathrm{Y}(1)-\mathrm{F}(1 / 4)$	84
$\mathrm{F}(7)-\mathrm{F}(4)$	2.773	$\mathrm{F}(7)-\mathrm{Y}(1)-\mathrm{F}(4)$	79
$\begin{aligned} & \mathrm{F}_{a x}-Y(1)-\mathrm{F}_{a x} \\ & \mathrm{~F}(8)-\mathrm{Y}(1)-\mathrm{F}(7) \end{aligned}$	171.5 (3)		

YF_{7} polyhedra of type II					
$\mathbf{Y}(2)-\mathrm{F}(2 A)$	$2.194(9)$	$\mathrm{Y}(4)-\mathrm{F}(1 A)$	$2.175(13)$	$\mathrm{Y}(6)-\mathrm{F}(6 A)$	$2.196(9)$
$\mathrm{Y}(2)-\mathrm{F}(5)$	$2.202(9)$	$\mathrm{Y}(4)-\mathrm{F}(4)$	$2.175(13)$	$\mathrm{Y}(6)-\mathrm{F}(3)$	$2.202(8)$
$\mathrm{Y}(2)-\mathrm{F}(5 A)$	$2.203(9)$	$\mathrm{Y}(3)-\mathrm{F}(7 A)$	$2.223(7)$	$\mathrm{Y}(6)-\mathrm{F}(3 A)$	$2.210(9)$
$\mathrm{Y}(2)-\mathrm{F}(2)$	$2.234(11)$	$\mathrm{Y}(4)-\mathrm{F}(4 A)$	$2.227(13)$	$\mathrm{Y}(6)-\mathrm{F}(6)$	$2.210(9)$
$\mathrm{Y}(2)-\mathrm{F}(2)$	$2.255(10)$	$\mathrm{Y}(4)-\mathrm{F}(1)$	$2.231(10)$	$\mathrm{Y}(6)-\mathrm{F}(12)$	$2.243(7)$
$\mathrm{Y}(2)-\mathrm{F}(9)$	$2.260(6)$	$\mathrm{Y}(4)-\mathrm{F}(4 A)$	$2.240(15)$	$\mathrm{Y}(6)-\mathrm{F}(6)$	$2.259(8)$
$\mathrm{Y}(2)-\mathrm{F}(10)$	$2.264(10)$	$\mathrm{Y}(4)-\mathrm{F}(8 A)$	$2.279(9)$	$\mathrm{Y}(6)-\mathrm{F}(11 A)$	$2.265(6)$

Pentagonal bipyramid $\mathrm{Y}(2) \mathrm{F}_{7}$

no longer be described in terms of the trigonal prisms of the ideal cube, but, like the polyhedra of the type I, they correspond to pentagonal bipyramids (Table 2). Around Y(2) (Fig. 1), the pentagonal base is formed by the atoms $\mathrm{F}(2), \mathrm{F}(2 A), \mathrm{F}(10), \mathrm{F}(9)$ and $\mathrm{F}(2 A) ; \mathrm{F}(5)$ and $\mathrm{F}(5 A)$ are the two axial atoms.

In the two types of environments, the axial bonds $\mathrm{Y}-\mathrm{F}_{\mathrm{ax}}$ are generally a little shorter than the equatorial bonds $\mathrm{Y}-\mathrm{F}_{\mathrm{eq}}$ (approximately 2.17 and $2.25 \AA$, respectively).

Characteristics of the structure. Fig. 1 shows that in the cationic layers, two polyhedra of the types I and II share one of their equatorial edges to form
$\mathrm{Y}_{2} \mathrm{~F}_{12}$ groups. These groups share one of their equatorial corners to form chains running along one of the three trigonal directions (respectively [210], [110] and [120] at the levels $0, \frac{1}{3}$ and $\frac{2}{3}$).
In the cationic planes (Fig. 1), the bipyramid chains are connected by the K atoms. The polyhedra KF_{8} also form chains. Each of their two shared edges bonds the axial F atoms of two bipyramids YF_{7}, on either side of the chains.

Fig. 1. Projection along the c axis of the cationic layer of $K Y F_{4}$ at the level $z=\frac{1}{3}$ (broken lines: KTIF_{4} lattice).

(a)

(b)

(c)

Fig. 2. Schematic representation of the environments of the cations showing their deformation from the 'ideal fluorite cube' (in thin dotted lines): (a) $\mathrm{K}(7) \mathrm{F}_{8}$ environment, with $\mathrm{F}(7), \mathrm{F}(8)$, $\mathrm{F}(7 A), \mathrm{F}(9 A)$ approximately in the ideal plane $(0 \overline{1} 1) ;(b) \mathrm{K}(8) \mathrm{F}_{8}$ environment, with $\mathrm{F}(8), \mathrm{F}(7), \mathrm{F}(8 A), \mathrm{F}(10 A)$ approximately in the ideal plane $(\overline{1} 01)$; (c) $\mathrm{Y}(1) \mathrm{F}_{7}$ environment, described as either a trigonal prism bounded by the almost ideal plane ($1 \overline{1} 0$) $[\mathrm{F}(1), \mathrm{F}(8), \mathrm{F}(1 A), \mathrm{F}(7)]$ and monocapped by $\mathrm{F}(4)$, or a pentagonal bipyramid with $\mathrm{F}_{\mathrm{eq}}=\mathrm{F}(4), \mathrm{F}(1 A), \mathrm{F}(10), \mathrm{F}(9), \mathrm{F}(1)$ and $F_{a x}=F(7), F(8)$.

This study shows that these phases and the compound KTIF_{4} described by Hebecker (1975) have the same structural characteristics. But according to Hebecker, KTIF_{4} would crystallize with a unit cell three times smaller $\left(a^{\prime}=a / \sqrt{3}, c^{\prime}=c\right)$ (see Fig. 1) involving only one $\mathrm{Tl}_{2} \mathrm{~F}_{12}$ group per layer.

The larger unit cell of KYF_{4} which contains three $\mathrm{Y}_{2} \mathrm{~F}_{12}$ groups per layer is to be attributed to the small extent of distortion observed between two adjacent $\operatorname{Ln}_{2} \mathrm{~F}_{12}$ groups along the three trigonal directions; as is probably the case with the compounds NaScF_{4} (Thomas \& Karraker, 1966) and NaInF_{4} (Grannec, Champarnaud \& Portier, 1970).

To our knowledge, up to now, bipyramidal surroundings have never been reported for Y. Such surroundings have been mentioned only for the lanthanides with the smallest ionic radi: Lu, Yb and Tm , for instance in the compounds $\beta-\mathrm{KYb}_{2} \mathrm{~F}_{7}$ (Le Fur, Aléonard, Gorius \& Roux, 1980), $\mathrm{CsYb}_{3} \mathrm{~F}_{10}$ (Aléonard, Roux \& Lambert, 1982) and $\beta-\mathrm{RbLu}_{3} \mathrm{~F}_{10}$
(Arbus, Fournier, Cousseins, Védrine \& Chevalier, 1982). In these compounds, the bipyramids are always characterized by bond lengths $\mathrm{Ln}-\mathrm{F}_{\mathrm{ax}}$ a little shorter than $\mathrm{Ln}-\mathrm{F}_{\mathrm{eq}}$, as observed in KYF_{4}.

References

Aléonard, S., Le Fur, Y., Pontonnier, L., Gorius, M. F. \& Roux, M. T. (1978). Ann. Chim. Fr. 3, 417-427.
Aléonard, S., Roux, M. T. \& Lambert, B. (1982). J. Solid State Chem. 42, 80-88.
Arbus, A., Fournier, M. T., Cousseins, J. C., Védrine, A. \& Chevalier, R. (1982). Acta Cryst. B38, 75-79.
Enraf-Nonius (1977). Structure Determination Package. EnrafNonius, Delft, The Netherlands.
Grannec, J., Champarnaud, J. C. \& Portier, J. (1970). Bull. Soc. Chim. Fr. 11, 3862-3868.
Hebecker, Ch. (1975). Z. Naturforsch. Teil B, 30, 305-312.
Le Fur, Y. (1977). Thesis. Univ. of Joseph Fourier, France.
le Fur, Y., Aléonard, S., Gorius, M. F. \& Roux, M. T. (1980). J. Solid State Chem. 35, 29-33.

Thomas, R. E. \& Karraker, R. H. (1966). Inorg. Chem. 5, 1933-1937.

$\mathbf{N a} \mathbf{2}_{2}\left[\mathbf{R u}\left(\mathbf{N O}_{2}\right)_{\mathbf{4}}(\mathbf{N O})(\mathbf{O H})\right] \cdot \mathbf{2 H} \mathbf{H}_{\mathbf{2}} \mathrm{O}$ - a Redetermination

By Alexander J. Blake,* Robert O. Gould, Brian F. G. Johnson and Emilio Parisini
Department of Chemistry, The University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland

(Received 8 July 1991; accepted 12 November 1991)

Abstract

Disodium hydroxotetranitro(nitroso)ruthenate(III) dihydrate, $M_{r}=414.1$, monoclinic, $C 2 / m$, $a=12.8765$ (6), $b=14.5867$ (9), $c=7.4478$ (4) \AA, β $=121.521(3)^{\circ}, \quad V=1192.5 \AA^{3}, \quad Z=4, \quad D_{x}=$ $2.306 \mathrm{Mg} \mathrm{m}^{-3}, \quad \bar{\lambda}(\mathrm{Mo} \mathrm{K} \mathrm{\alpha})=0.71073 \AA, \quad \mu=$ $1.430 \mathrm{~mm}^{-1}, \nmid(000)=808, T=298 \mathrm{~K}, R=0.0251$ for 1760 unique observed reflections. We have redetermined the structure of the title compound by single-crystal X-ray diffraction. After recalculation of the bond lengths derived in the neutron diffraction study, the distances involving the non- H atoms show no significant differences between the two determinations.

Introduction. As part of ongoing research related to the geometrical aspects of tetranitro- and hexanitrometallate species, single crystals of $\mathrm{Na}_{2}[\mathrm{Ru}-$ $\left.\left(\mathrm{NO}_{2}\right)_{4}(\mathrm{NO})(\mathrm{OH})\right] .2 \mathrm{H}_{2} \mathrm{O}$ were prepared. A crystal structure analysis using neutron diffraction had previously been published (Simonsen \& Mueller, 1965), but both the R value of 0.098 and the uncertainties in

[^1]0108-2701/92/060982-03806.00
the bond lengths of up to $0.007 \AA$ were rather high. In order to improve the accuracy of the structure, a dataset was collected using Mo $K \alpha$ X-radiation. In addition to the expected random errors between the two determinations, there appear to be marked systematic errors.

Experimental. Compound prepared by dissolution of excess NaNO_{2} in an aqueous solution of RuCl_{3} until colour change observed, crystals obtained by slow evaporation from resulting solution. Yellow columnar crystal, $0.78 \times 0.39 \times 0.39 \mathrm{~mm}, \quad$ Stoe STADI-4 four-circle diffractometer, graphitemonochromated Mo $K \alpha$ X-radiation, cell parameters from 2θ values of 44 reflections measured at $\pm \omega$ (30 $\leq 2 \theta \leq 32^{\circ}$). For data collection $T=298 \mathrm{~K}, \omega-2 \theta$ scans using the learnt-profile method (Clegg, 1981), $2 \theta_{\text {max }} 60^{\circ}, h-18 \rightarrow 15, k 0 \rightarrow 20, l 0 \rightarrow 10,3$ standard reflections, no significant crystal movement or decay, absorption correction using ψ scans (min. and max. transmission factors 0.470 and 0.561 , respectively), 1811 unique reflections, giving 1760 with $F \geq 4 \sigma(F)$ for structure refinement [using full-matrix least
© 1992 International Union of Crystallography

[^0]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54888 (27 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]: * Author for correspondence.

